CS 188: Atrtificial Intelligence
Spring 2010

Lecture 2: Queue-Based Search
1/21/2010

Pieter Abbeel — UC Berkeley

Many slides from Dan Klein

Announcements

= Project 0: Python Tutorial
= Outtoday. Due next week Thursday.
= Lab sessions in 271 Soda:
= Monday 2-3pm
= Wednesday 4-5pm
The lab time is optional, but PO itself is not
On submit, you should get email from the autograder

Potentially more lab sessions or office hours held in the lab --- track the
announcements section on the webpage!

= Written 1: Search
= Out today, also due next week Thursday.
= Sections starting next week, location: 285 Cory
Section 101: Tue 3-4pm
Section 104: Tue 4-5pm
Section 102: Wed 11-noon
Section 103: Wed noon-1pm

Today

= Agents
= Search Problems

= Uninformed Search Methods (part review for some)
= Depth-First Search
= Breadth-First Search
= Uniform-Cost Search

= Heuristic Search Methods (new for all)
= Greedy Search

Reminder

= Only a very small fraction of Al is about making
computers play games intelligently

= Recall: computer vision, natural language,
robotics, machine learning, computational
biology! etc.

= That being said: games tend to provide relatively
simple example settings which are great to
illustrate concepts and learn about algorithms
which underlie many areas of Al

A reflex agent for pacman

4 actions: move North, East,
South or West

[Reflexagent]

[Reflex agent

= While(food left)

= Sort the possible directions to move according
to the amount of food in each direction

= Go in the direction with the largest amount of
food

A reflex agent for pacman (2)

= While(food left)

= Sort the possible directions to move according
to the amount of food in each direction

= Go in the direction with the largest amount of

food

A reflex agent for pacman (3)

[Reflexagent]

A reflex agent for pacman (4)

Reflex agent I

= While(food left)
= Sort the possible directions to move according to the
amount of food in each direction
= Go in the direction with the largest amount of food

= But, if other options are available, exclude the direction we
just came from

= While(food left)
= If can keep going in the current direction, do so
= Otherwise:
= Sort directions according to the amount of food
= Go in the direction with the largest amount of food
= But, if other options are available, exclude the direction we just

came from

A reflex agent for pacman (5)

Reflex agent I

= While(food left)
= |f can keep going in the current direction, do so
= Otherwise:
= Sort directions according to the amount of food
= Go in the direction with the largest amount of food
= But, if other options are available, exclude the direction we just
came from

Reflex Agents

= Reflex agents:

Choose action based on current percept
(and maybe memory)

May have memory or a model of the world’s
current state

Do not consider the future consequences of
their actions

Act on how the world IS

= Can a reflex agent be rational?

Goal Based Agents

= Goal-based agents:

= Plan ahead

= Ask “what if”
Decisions based on
(hypothesized)
consequences of
actions
Must have a model of
how the world evolves
in response to actions
Act on how the world
WOULD BE

Search Problems

= A search problem consists of:

g | [1.1.1.1

‘N, 1.0
/
~—

“E", 1.0

= A successor function

= A start state and a goal test

= A solution is a sequence of actions (a plan)
which transforms the start state to a goal state

Example: Romania

= State space:

= Cities
Oradea
/:\ o = Successor
I e\ \‘1' function:
A o\ -
T\ Sbiu , Fagaras 2 = Go to adj city
s —a vestu with cost = dist

o g ess\ / = Start state:
g | e\) * Arad

_‘%:Menaa., \I;L ﬂ%}/ E(.Wu\"':"“ « Goal test:
obretata 0 | ucharest \ . B
el [b Is state

HGiurgiu Bucharest?

= Solution?

State Space Graphs

= State space graph: A
mathematical
representation of a
search problem

= For every search problem,
there’s a corresponding
state space graph

The successor function is
represented by arcs

= Wecan rare|y build this Ridiculaqs/y tiny search graph
. for a tiny search problem
graph in memory (so
we don’t)

State Space Sizes?

= Search Problem:
Eat all of the food

= Pacman positions:
10x12=120

= Food count: 30

Search Trees

“N"k,y ‘E", 1.0

I I

= Asearch tree:
= This is a “what if” tree of plans and outcomes
= Start state at the root node
Children correspond to successors
Nodes contain states, correspond to PLANS to those states
For most problems, we can never actually build the whole tree

Another Search Tree

G Ga> o> @D

= Search:
= Expand out possible plans
= Maintain a fringe of unexpanded plans
= Try to expand as few tree nodes as possible

General Tree Search

funetion TREF-SEARCI(problem, strategy) returns a solution, or failure
in'tialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node centains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end
-
= Important ideas:
= Fringe Detailed pseudocode
= Expansion is in the book!

= Exploration strategy

= Main question: which fringe nodes to explore?

Example: Tree Search

State Graphs vs. Search Trees

Each NODE in in the
search tree is an
entire PATH in the

problem graph.
S
TS —
e p
/dN N I
We construct both b c e h r q
on demand — and | [N o
we construct as a a h r p q f
little as possible. RN |
f q c G
pq A i
c a
q ‘ G
a

Review: Depth First Search

Strategy: expand
deepest node first

Implementation:
Fringe is a LIFO
stack

Review: Breadth First Search

Strategy: expand @ ® ©,
shallowest node first @)

e
Implementation: ad— 6
Fringe is a FIFO
queue P 0

Search /@}N ﬁ @
Tiers @
@

.
2
e

e

——
—

Search Algorithm Properties

Complete? Guaranteed to find a solution if one exists?
Optimal? Guaranteed to find the least cost path?
Time complexity?

Space complexity?

Variables:

DFS

Algorithm Complete |Optimal |Time Space

DFS Depth First N N Infinite Infinite

n Number of states in the problem

b The average branching factor B
(the average number of successors)

Cc* Cost of least cost solution

s Depth of the shallowest solution

m Max depth of the search tree

Search
()

= Infinite paths make DFS incomplete...
= How can we fix this?

DFS

= With cycle checking, DFS is complete.*

BFS

1 node
b nodes
b2 nodes
m tiers
b™ nodes
Algorithm Complete |Optimal |Time Space
/ Path N
oE ‘ghe;:ing Y N o™ O(bm)

= Whenis DFS optimal?

* Or graph search — next lecture.

Algorithm Complete |Optimal |Time Space
DFS |Cheing | Y N o))
BFS Y N* O(b*+1) [SICA)
1 node
b nodes
s tiers

b2 nodes

bs nodes

b™ nodes

= When is BFS optimal?

Comparisons

= When will BFS outperform DFS?

= When will DFS outperform BFS?

lterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of
length 1 or less.

2. If “1” failed, do a DFS which only searches paths
of length 2 or less.

3. If “2” failed, do a DFS which only searches paths
of length 3 or less.

....and so on.
Algorithm Complete |Optimal [Time Space

/ Path .
DFS ‘ghe;:ing Y N O™ O(bm)
BFS Y N* O(b*+1) O(b**1)
ID Y N* O(bs+!) O(bs)

Costs on Actions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.

We will quickly cover an algorithm which does find the least-cost path.

Uniform Cost Search

Expand cheapest node first:

Fringe is a priority queue

3
e
Cost @6 a @137
contours S

q 11@/@10 a
a

pogdfle. o o o

Priority Queue Refresher

= A priority queue is a data structure in which you can insert
and retrieve (key, value) pairs with the following operations:

pa.push(key, value) |inserts (key, value) into the queue.

pa.pop() returns the key with the lowest value, and
removes it from the queue.

= You can decrease a key’s priority by pushing it again

= Unlike a regular queue, insertions aren’t constant time,
usually O(log n)

We'll need priority queues for cost-sensitive search methods

Uniform Cost Search

Algorithm Complete |Optimal [Time Space
Path

e ‘g/hegiing Y N o™ O(bm)

BFS Y N O+ O+

ucs Y* Y O(bCe) O(bCe)

*UCS can fail if
actions can get
arbitrarily cheap

CH/etiers <

Uniform Cost Issues

= Remember: explores AN o<
increasing cost contours

;
c<
L)
= The good: UCS is o\
complete and optimal! v \

= The bad:

= Explores options in every
“direction”

= No information about goal
location Goal

Search Heuiristics

= Any estimate of how close a state is to a goal
= Designed for a particular search problem
= Examples: Manhattan distance, Euclidean distance

Straight line distance

7 ,qomd"‘ﬂ to Bucharest
‘{/ N Neamt Arad 266
\ O er Bucharest 0
75/ Zorind N\ 151 ~ Craiova 160
/ \ T lasi Dobreta 242
Arnd B __ 140 \\ 2 Eforie 161
~—~ Fagaras 178
\ 80 a B vast {l rsov: ';L
Timisoara N\ Rimnicu ilcea \\ / Lugoj 244
~ - 122 Mehadia 241
FI \ Ty e / Neamt 234

Lugoj 97~ Pitesti N\ /

TR ~ N am Oradea 380
\ 146 S\ ss AL »
O Mehacia ~N\ 22 Utzicent \ Rimnicu Vilcea 193
75 \ \\i;r/ \ 86 Sibiu 253
o | / Bucharest \ Timisoara 329
Dobreta 120 /o0 Urziceni 80
Craiova / Eforie Vaslui 199
O Giurgiu Zerind 7

Best First / Greedy Search

= Expand the node that seems closest...

Fegras>
366 380

193

= What can go wrong?

Best First / Greedy Search

= A common case:

= Best-first takes you straight
to the (wrong) goal

= Can we leverage the heuristic information
in a more sound way?

= Worst-case: like a badly-
guided DFS in the worst
case
= Can explore everything

= Can get stuck in loops if no
cycle checking

->A* search

We will cover that on Tuesday!

= Like DFS in completeness
(finite states w/ cycle
checking)

