
1

CS 188: Artificial Intelligence
Spring 2010

Lecture 2: Queue-Based Search

1/21/2010

Pieter Abbeel – UC Berkeley

Many slides from Dan Klein

Announcements

� Project 0: Python Tutorial

� Out today. Due next week Thursday.

� Lab sessions in 271 Soda:

� Monday 2-3pm

� Wednesday 4-5pm

� The lab time is optional, but P0 itself is not

� On submit, you should get email from the autograder

� Potentially more lab sessions or office hours held in the lab --- track the
announcements section on the webpage!

� Written 1: Search

� Out today, also due next week Thursday.

� Sections starting next week, location: 285 Cory

� Section 101: Tue 3-4pm

� Section 104: Tue 4-5pm

� Section 102: Wed 11-noon

� Section 103: Wed noon-1pm

Today

� Agents

� Search Problems

� Uninformed Search Methods (part review for some)
� Depth-First Search

� Breadth-First Search

� Uniform-Cost Search

� Heuristic Search Methods (new for all)
� Greedy Search

Reminder

� Only a very small fraction of AI is about making
computers play games intelligently

� Recall: computer vision, natural language,
robotics, machine learning, computational

biology, etc.

� That being said: games tend to provide relatively
simple example settings which are great to
illustrate concepts and learn about algorithms

which underlie many areas of AI

A reflex agent for pacman

� While(food left)

� Sort the possible directions to move according
to the amount of food in each direction

� Go in the direction with the largest amount of
food

Reflex agent

4 actions: move North, East,

South or West

A reflex agent for pacman (2)

� While(food left)

� Sort the possible directions to move according
to the amount of food in each direction

� Go in the direction with the largest amount of
food

Reflex agent

2

A reflex agent for pacman (3)

� While(food left)

� Sort the possible directions to move according to the
amount of food in each direction

� Go in the direction with the largest amount of food

� But, if other options are available, exclude the direction we

just came from

Reflex agent

A reflex agent for pacman (4)

� While(food left)

� If can keep going in the current direction, do so

� Otherwise:

� Sort directions according to the amount of food

� Go in the direction with the largest amount of food

� But, if other options are available, exclude the direction we just

came from

Reflex agent

A reflex agent for pacman (5)

� While(food left)

� If can keep going in the current direction, do so

� Otherwise:

� Sort directions according to the amount of food

� Go in the direction with the largest amount of food

� But, if other options are available, exclude the direction we just

came from

Reflex agent

Reflex Agents

� Reflex agents:
� Choose action based on current percept

(and maybe memory)

� May have memory or a model of the world’s
current state

� Do not consider the future consequences of
their actions

� Act on how the world IS

� Can a reflex agent be rational?

Goal Based Agents

� Goal-based agents:
� Plan ahead

� Ask “what if”

� Decisions based on
(hypothesized)
consequences of
actions

� Must have a model of
how the world evolves
in response to actions

� Act on how the world
WOULD BE

Search Problems

� A search problem consists of:

� A state space

� A successor function

� A start state and a goal test

� A solution is a sequence of actions (a plan)
which transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

3

Example: Romania

� State space:

� Cities

� Successor
function:

� Go to adj city

with cost = dist

� Start state:

� Arad

� Goal test:

� Is state ==

Bucharest?

� Solution?

State Space Graphs

� State space graph: A
mathematical
representation of a
search problem
� For every search problem,

there’s a corresponding
state space graph

� The successor function is
represented by arcs

� We can rarely build this
graph in memory (so
we don’t)

S

G

d

b

p
q

c

e

h

a

f

r

Ridiculously tiny search graph
for a tiny search problem

State Space Sizes?

� Search Problem:
Eat all of the food

� Pacman positions:
10 x 12 = 120

� Food count: 30

� Ghost positions: 12

� Pacman facing:
up, down, left, right

Search Trees

� A search tree:

� This is a “what if” tree of plans and outcomes

� Start state at the root node

� Children correspond to successors

� Nodes contain states, correspond to PLANS to those states

� For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

Another Search Tree

� Search:
� Expand out possible plans

� Maintain a fringe of unexpanded plans

� Try to expand as few tree nodes as possible

General Tree Search

� Important ideas:
� Fringe
� Expansion
� Exploration strategy

� Main question: which fringe nodes to explore?

Detailed pseudocode
is in the book!

4

Example: Tree Search

S

G

d

b

p
q

c

e

h

a

f

r

State Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c
G

a

S

G

d

b

p
q

c

e

h

a

f

r

We construct both
on demand – and

we construct as
little as possible.

Each NODE in in the
search tree is an

entire PATH in the
problem graph.

Review: Depth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r
q

p

h

fd

b

a

c

e

r

Strategy: expand
deepest node first

Implementation:
Fringe is a LIFO

stack

Review: Breadth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand
shallowest node first

Implementation:
Fringe is a FIFO

queue

Search Algorithm Properties

� Complete? Guaranteed to find a solution if one exists?
� Optimal? Guaranteed to find the least cost path?
� Time complexity?
� Space complexity?

Variables:

n Number of states in the problem

b The average branching factor B
(the average number of successors)

C* Cost of least cost solution

s Depth of the shallowest solution

m Max depth of the search tree

DFS

� Infinite paths make DFS incomplete…

� How can we fix this?

Algorithm Complete Optimal Time Space

DFS Depth First
Search

N N O(BLMAX) O(LMAX)

START

GOAL

a

b

N N Infinite Infinite

5

DFS
� With cycle checking, DFS is complete.*

� When is DFS optimal?

Algorithm Complete Optimal Time Space

DFS w/ Path
Checking Y N O(bm) O(bm)

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

* Or graph search – next lecture.

BFS

� When is BFS optimal?

Algorithm Complete Optimal Time Space

DFS w/ Path
Checking

BFS

Y N O(bm+1) O(bm)

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

Y N* O(bs+1) O(bs+1)

bs nodes

Comparisons

� When will BFS outperform DFS?

� When will DFS outperform BFS?

Iterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of
length 1 or less.

2. If “1” failed, do a DFS which only searches paths
of length 2 or less.

3. If “2” failed, do a DFS which only searches paths

of length 3 or less.

….and so on.

Algorithm Complete Optimal Time Space

DFS w/ Path
Checking

BFS

ID

Y N O(bm) O(bm)

Y N* O(bs+1) O(bs+1)

Y N* O(bs+1) O(bs)

…
b

Costs on Actions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.

We will quickly cover an algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

1

4

4

15

1

3
2

2

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Expand cheapest node first:

Fringe is a priority queue
S

G

d

b

p
q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8
1

15

1

2

Cost
contours

2

6

Priority Queue Refresher

pq.push(key, value) inserts (key, value) into the queue.

pq.pop() returns the key with the lowest value, and
removes it from the queue.

� You can decrease a key’s priority by pushing it again

� Unlike a regular queue, insertions aren’t constant time,

usually O(log n)

� We’ll need priority queues for cost-sensitive search methods

� A priority queue is a data structure in which you can insert

and retrieve (key, value) pairs with the following operations:

Uniform Cost Search

Algorithm Complete Optimal Time Space

DFS w/ Path
Checking

BFS

UCS

Y N O(bm) O(bm)

…
b

C*/ε tiers

Y N O(bs+1) O(bs+1)

Y* Y O(bC*/ε) O(bC*/ε)

* UCS can fail if
actions can get

arbitrarily cheap

Uniform Cost Issues

� Remember: explores
increasing cost contours

� The good: UCS is
complete and optimal!

� The bad:
� Explores options in every

“direction”
� No information about goal

location Start Goal

…

c ≤ 3

c ≤ 2

c ≤ 1

Search Heuristics

� Any estimate of how close a state is to a goal

� Designed for a particular search problem

� Examples: Manhattan distance, Euclidean distance

10

5

11.2

Heuristics Best First / Greedy Search

� Expand the node that seems closest…

� What can go wrong?

7

Best First / Greedy Search

� A common case:
� Best-first takes you straight

to the (wrong) goal

� Worst-case: like a badly-
guided DFS in the worst
case
� Can explore everything
� Can get stuck in loops if no

cycle checking

� Like DFS in completeness
(finite states w/ cycle
checking)

…
b

…
b

� Can we leverage the heuristic information

in a more sound way?

�A* search

We will cover that on Tuesday!

